- deep QGM Network Architecture
digraph {
graph [size="22.05,22.05"]
node [align=left fontname=monospace fontsize=10 height=0.2 ranksep=0.1 shape=box style=filled]
139945457199760 [label="
(1, 9)" fillcolor=darkolivegreen1]
139945434913568 [label=CatBackward0]
139945434913664 -> 139945434913568
139945434913664 [label=AddmmBackward0]
139945434914000 -> 139945434913664
139945437824480 [label="outputs.0.bias
(1)" fillcolor=lightblue]
139945437824480 -> 139945434914000
139945434914000 [label=AccumulateGrad]
139945434913952 -> 139945434913664
139945434913952 [label=ReluBackward0]
139945434914096 -> 139945434913952
139945434914096 [label=AddmmBackward0]
139945434914240 -> 139945434914096
139945459033088 [label="fc2.bias
(10)" fillcolor=lightblue]
139945459033088 -> 139945434914240
139945434914240 [label=AccumulateGrad]
139945434914192 -> 139945434914096
139945434914192 [label=ReluBackward0]
139945434914336 -> 139945434914192
139945434914336 [label=AddmmBackward0]
139945434914528 -> 139945434914336
139945457179680 [label="fc1.bias
(20)" fillcolor=lightblue]
139945457179680 -> 139945434914528
139945434914528 [label=AccumulateGrad]
139945434914480 -> 139945434914336
139945434914480 [label=TBackward0]
139945434914576 -> 139945434914480
139945457214224 [label="fc1.weight
(20, 1)" fillcolor=lightblue]
139945457214224 -> 139945434914576
139945434914576 [label=AccumulateGrad]
139945434913328 -> 139945434914096
139945434913328 [label=TBackward0]
139945434914624 -> 139945434913328
139945454148400 [label="fc2.weight
(10, 20)" fillcolor=lightblue]
139945454148400 -> 139945434914624
139945434914624 [label=AccumulateGrad]
139945434913904 -> 139945434913664
139945434913904 [label=TBackward0]
139945434914432 -> 139945434913904
139945437824400 [label="outputs.0.weight
(1, 10)" fillcolor=lightblue]
139945437824400 -> 139945434914432
139945434914432 [label=AccumulateGrad]
139945434913616 -> 139945434913568
139945434913616 [label=AddmmBackward0]
139945434914768 -> 139945434913616
139945434909808 [label="outputs.1.bias
(1)" fillcolor=lightblue]
139945434909808 -> 139945434914768
139945434914768 [label=AccumulateGrad]
139945434913952 -> 139945434913616
139945434914288 -> 139945434913616
139945434914288 [label=TBackward0]
139945434914720 -> 139945434914288
139945435153648 [label="outputs.1.weight
(1, 10)" fillcolor=lightblue]
139945435153648 -> 139945434914720
139945434914720 [label=AccumulateGrad]
139945434913520 -> 139945434913568
139945434913520 [label=AddmmBackward0]
139945434912512 -> 139945434913520
139945434909968 [label="outputs.2.bias
(1)" fillcolor=lightblue]
139945434909968 -> 139945434912512
139945434912512 [label=AccumulateGrad]
139945434913952 -> 139945434913520
139945434914144 -> 139945434913520
139945434914144 [label=TBackward0]
139945434914672 -> 139945434914144
139945434909888 [label="outputs.2.weight
(1, 10)" fillcolor=lightblue]
139945434909888 -> 139945434914672
139945434914672 [label=AccumulateGrad]
139945434913280 -> 139945434913568
139945434913280 [label=AddmmBackward0]
139945434914384 -> 139945434913280
139945434910128 [label="outputs.3.bias
(1)" fillcolor=lightblue]
139945434910128 -> 139945434914384
139945434914384 [label=AccumulateGrad]
139945434913952 -> 139945434913280
139945434914048 -> 139945434913280
139945434914048 [label=TBackward0]
139945435037808 -> 139945434914048
139945434910048 [label="outputs.3.weight
(1, 10)" fillcolor=lightblue]
139945434910048 -> 139945435037808
139945435037808 [label=AccumulateGrad]
139945434913472 -> 139945434913568
139945434913472 [label=AddmmBackward0]
139945435038000 -> 139945434913472
139945434910288 [label="outputs.4.bias
(1)" fillcolor=lightblue]
139945434910288 -> 139945435038000
139945435038000 [label=AccumulateGrad]
139945434913952 -> 139945434913472
139945435037760 -> 139945434913472
139945435037760 [label=TBackward0]
139945435037952 -> 139945435037760
139945434910208 [label="outputs.4.weight
(1, 10)" fillcolor=lightblue]
139945434910208 -> 139945435037952
139945435037952 [label=AccumulateGrad]
139945434913376 -> 139945434913568
139945434913376 [label=AddmmBackward0]
139945435038144 -> 139945434913376
139945434910448 [label="outputs.5.bias
(1)" fillcolor=lightblue]
139945434910448 -> 139945435038144
139945435038144 [label=AccumulateGrad]
139945434913952 -> 139945434913376
139945435037904 -> 139945434913376
139945435037904 [label=TBackward0]
139945435038096 -> 139945435037904
139945434910368 [label="outputs.5.weight
(1, 10)" fillcolor=lightblue]
139945434910368 -> 139945435038096
139945435038096 [label=AccumulateGrad]
139945434913712 -> 139945434913568
139945434913712 [label=AddmmBackward0]
139945435038288 -> 139945434913712
139945434910608 [label="outputs.6.bias
(1)" fillcolor=lightblue]
139945434910608 -> 139945435038288
139945435038288 [label=AccumulateGrad]
139945434913952 -> 139945434913712
139945435038048 -> 139945434913712
139945435038048 [label=TBackward0]
139945435038240 -> 139945435038048
139945434910528 [label="outputs.6.weight
(1, 10)" fillcolor=lightblue]
139945434910528 -> 139945435038240
139945435038240 [label=AccumulateGrad]
139945434913760 -> 139945434913568
139945434913760 [label=AddmmBackward0]
139945435038432 -> 139945434913760
139945434992784 [label="outputs.7.bias
(1)" fillcolor=lightblue]
139945434992784 -> 139945435038432
139945435038432 [label=AccumulateGrad]
139945434913952 -> 139945434913760
139945435038192 -> 139945434913760
139945435038192 [label=TBackward0]
139945435038384 -> 139945435038192
139945434992704 [label="outputs.7.weight
(1, 10)" fillcolor=lightblue]
139945434992704 -> 139945435038384
139945435038384 [label=AccumulateGrad]
139945434913808 -> 139945434913568
139945434913808 [label=AddmmBackward0]
139945435038576 -> 139945434913808
139945434992944 [label="outputs.8.bias
(1)" fillcolor=lightblue]
139945434992944 -> 139945435038576
139945435038576 [label=AccumulateGrad]
139945434913952 -> 139945434913808
139945435038336 -> 139945434913808
139945435038336 [label=TBackward0]
139945435038528 -> 139945435038336
139945434992864 [label="outputs.8.weight
(1, 10)" fillcolor=lightblue]
139945434992864 -> 139945435038528
139945435038528 [label=AccumulateGrad]
139945434913568 -> 139945457199760
}
- deep BQMM Network Architecture
digraph {
graph [size="12,12"]
node [align=left fontname="Times New Roman" fontsize=10 height=0.2 ranksep=0.1 shape=box style=filled]
139794723974976 [label="
(1, 9)" fillcolor=darkolivegreen1]
139794723952576 [label=AddmmBackward0]
139794784143344 -> 139794723952576
139794723973296 [label="outputs.bias
(9)" fillcolor=lightblue]
139794723973296 -> 139794784143344
139794784143344 [label=AccumulateGrad]
139794784143248 -> 139794723952576
139794784143248 [label=LeakyReluBackward0]
139798439809328 -> 139794784143248
139798439809328 [label=AddmmBackward0]
139798439809472 -> 139798439809328
139794784064912 [label="fc2.bias
(10)" fillcolor=lightblue]
139794784064912 -> 139798439809472
139798439809472 [label=AccumulateGrad]
139798439809760 -> 139798439809328
139798439809760 [label=LeakyReluBackward0]
139798439809136 -> 139798439809760
139798439809136 [label=AddmmBackward0]
139798439635456 -> 139798439809136
139794723973536 [label="fc1.bias
(100)" fillcolor=lightblue]
139794723973536 -> 139798439635456
139798439635456 [label=AccumulateGrad]
139798439635552 -> 139798439809136
139798439635552 [label=TBackward0]
139798439635648 -> 139798439635552
139794723973376 [label="fc1.weight
(100, 1)" fillcolor=lightblue]
139794723973376 -> 139798439635648
139798439635648 [label=AccumulateGrad]
139798439809664 -> 139798439809328
139798439809664 [label=TBackward0]
139798439635504 -> 139798439809664
139794742617008 [label="fc2.weight
(10, 100)" fillcolor=lightblue]
139794742617008 -> 139798439635504
139798439635504 [label=AccumulateGrad]
139794726867440 -> 139794723952576
139794726867440 [label=TBackward0]
139798439809280 -> 139794726867440
139798507380880 [label="outputs.weight
(9, 10)" fillcolor=lightblue]
139798507380880 -> 139798439809280
139798439809280 [label=AccumulateGrad]
139794723952576 -> 139794723974976
}