Plots 1 2 3 4 5 6 # pkg> add Plots PyPlot GR UnicodePlots using Plots # pyplot() # PyPlot backend eq(d) = -7.65 * sind(d) + 9.87 * sind(2d + 206) plot(eq, 1:365) UnicodePlots 1 2 3 4 5 # add UnicodePlots using UnicodePlots FirstLinePlot = lineplot([1, 2, 3, 7], [1, 2, -5, 7], title = "First Line Plot", border = :dotted) UnicodePlots.savefig(FirstLinePlot, "FirstLinePlot.txt") 1 2 FirstDensityPlot = densityplot(collect(1:100), randn(100), border = :dotted) UnicodePlots.savefig(FirstDensityPlot, "FirstDensityPlot.txt") VegaLite 1 2 3 4 5 6 # add VegaLite using VegaLite X = ["Monday", "Tuesday", "Wednesday", "Thrusday", "Friday","Saturday","Sunday"] Y = [11, 11, 15, 13, 12, 13, 10] P = pie(X, Y) Winston 1 2 3 4 5 6 7 8 9 using Winston x = range(0, stop = 3pi, length = 100); c = cos.(x); s = sin.(x); p = FramedPlot(title = "Winston Graphics!", xlabel = "\\Sigma x^2_i", ylabel = "\\Theta_i") add(p, FillBetween(x, c, x, s)) add(p, Curve(x, c, color = "black")) add(p, Curve(x, s, color = "red")) Gadfly 1 2 3 4 5 using Gadfly using RDatasets iris = dataset("datasets", "iris"); Gadfly.plot(iris, x = :SepalLength, y = :SepalWidth, Geom.point) 1 Gadfly.plot(iris, x = :SepalLength, y = :SepalWidth, Geom.point, Geom.line) 1 Gadfly.plot(iris, x = :SepalLength, y = :SepalWidth, color = :Species, Geom.point) Compose 1 2 3 4 using Compose composition = compose(compose(context(), rectangle()), fill("tomato")) draw(SVG("simple.svg", 6cm, 6cm), composition) 1 2 3 composition = compose(context(), (context(), Compose.circle(), fill("bisque")), (context(), rectangle(), fill("tomato"))) composition |> SVG("simple2.svg") PyPlot 1 2 3 4 5 6 7 using Conda Conda.add("matplotlib") using PyPlot x = range(0; stop = 2*pi, length = 500); y = sin.(3 * x + 4 * cos.(2 * x)); PyPlot.plot(x, y, color = "blue", linewidth = 1.0, linestyle = "--") 1 surf(rand(20, 30)) Gaston 1 2 3 4 5 using PGFPlots R = Axis([Plots.Linear(x->sin(3x)*exp(-0.3x), (0,8), legendentry = L"$\sin(3x)*exp(-0.3x)$"), Plots.Linear(x->sqrt(x)/(1+x^2), (0,8), legendentry = L"$\sqrt{2x}/(1+x^2)$")]) save("Plot_LinearPGF.svg", R) Summary from《LEARN JULIA PROGRAMMING》